IQGAP1 is a novel phosphatidylinositol 4,5 bisphosphate effector in regulation of directional cell migration.

نویسندگان

  • Suyong Choi
  • Narendra Thapa
  • Andrew C Hedman
  • Zhigang Li
  • David B Sacks
  • Richard A Anderson
چکیده

Phosphatidylinositol 4,5 bisphosphate (PIP₂) is a key lipid messenger for regulation of cell migration. PIP₂ modulates many effectors, but the specificity of PIP₂ signalling can be defined by interactions of PIP₂-generating enzymes with PIP₂ effectors. Here, we show that type Iγ phosphatidylinositol 4-phosphate 5-kinase (PIPKIγ) interacts with the cytoskeleton regulator, IQGAP1, and modulates IQGAP1 function in migration. We reveal that PIPKIγ is required for IQGAP1 recruitment to the leading edge membrane in response to integrin or growth factor receptor activation. Moreover, IQGAP1 is a PIP₂ effector that directly binds PIP₂ through a polybasic motif and PIP₂ binding activates IQGAP1, facilitating actin polymerization. IQGAP1 mutants that lack PIPKIγ or PIP₂ binding lose the ability to control directional cell migration. Collectively, these data reveal a synergy between PIPKIγ and IQGAP1 in the control of cell migration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IQGAP1 is a phosphoinositide effector and kinase scaffold.

Phosphatidylinositol 4,5-bisphosphate (PI4,5P2) is a lipid messenger that regulates a wide variety of cellular functions. The majority of cellular PI4,5P2 is generated by isoforms of the type I phosphatidylinositol phosphate kinases (PIPKI) that are generated from three genes, and each PIPKI isoform has a unique distribution and function in cells. It has been shown that the signaling specificit...

متن کامل

Type Iγ phosphatidylinositol phosphate kinase is required for EGF-stimulated directional cell migration

Phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) modulates a plethora of cytoskeletal interactions that control the dynamics of actin assembly and, ultimately, cell migration. We show that the type Igamma phosphatidylinositol phosphate kinase 661 (PIPKIgamma661), an enzyme that generates PI4,5P(2), is required for growth factor but not G protein-coupled receptor-stimulated directional migratio...

متن کامل

Regulation of directional cell migration by membrane-induced actin bundling.

During embryonic development and in metastatic cancers, cells detach from the epithelium and migrate with persistent directionality. Directional cell migration is also crucial for the regeneration and maintenance of the epithelium and impaired directional migration is linked to chronic inflammatory diseases. Despite its significance, the mechanisms controlling epithelial cell migration remain p...

متن کامل

Type I PIPK-α regulates directed cell migration by modulating Rac1 plasma membrane targeting and activation

Phosphatidylinositol-4,5-bisphosphate (PI4,5P(2)) is a critical regulator of cell migration, but the roles of the type I phosphatidylinositol-4-phosphate 5-kinases (PIPKIs), which synthesize PI4,5P(2), have yet to be fully defined in this process. In this study, we report that one kinase, PIPKI-alpha, is a novel upstream regulator of Rac1 that links activated integrins to the regulation of cell...

متن کامل

Identification of cyclin A2 as the downstream effector of the nuclear phosphatidylinositol 4,5-bisphosphate signaling network.

In addition to the well characterized phosphoinositide second messengers derived from the plasma membrane, increasing evidence supports the existence of a nuclear phosphoinositide signaling network. The aim of this investigation was to dissect the role played by nuclear phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in cell cycle progression and to determine the cell cycle regulatory com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 32 19  شماره 

صفحات  -

تاریخ انتشار 2013